Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-3. Positive Definite Matrices

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

Cholesky factorization - Square Root of a Matrix

Cholesky factorization – Square Root of a Matrix

Definition

An n × n matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then $\lambda > 0$.

Definition

An $n \times n$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then $\lambda > 0$.

Theorem

If A is a positive definite matrix, then det(A) > 0 and A is invertible.

Definition

An $n \times n$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then $\lambda > 0$.

Theorem

If A is a positive definite matrix, then det(A) > 0 and A is invertible.

Proof.

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, A ~ D, where D = diag($\lambda_1, \lambda_2, \ldots, \lambda_n$). Similar matrices have the same determinant, so

$$det(A) = det(D) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

Since A is positive definite, $\lambda_i > 0$ for all i, $1 \le i \le n$; it follows that det(A) > 0, and therefore A is invertible.

Theorem

A symmetric matrix A is positive definite if and only if $\vec{x}^T A \vec{x} > 0$ for all $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$.

Theorem

A symmetric matrix A is positive definite if and only if $\vec{x}^T A \vec{x} > 0$ for all $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$.

Proof.

Since A is symmetric, there exists an orthogonal matrix P so that

$$P^{T}AP = diag(\lambda_1, \lambda_2, \dots, \lambda_n) = D,$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the (not necessarily distinct) eigenvalues of A. Let $\vec{x} \in \mathbb{R}^n, \vec{x} \neq \vec{0}$, and define $\vec{y} = P^T \vec{x}$. Then

$$\vec{x}^{\mathrm{T}} A \vec{x} = \vec{x}^{\mathrm{T}} (P D P^{\mathrm{T}}) \vec{x} = (\vec{x}^{\mathrm{T}} P) D (P^{\mathrm{T}} \vec{x}) = (P^{\mathrm{T}} \vec{x})^{\mathrm{T}} D (P^{\mathrm{T}} \vec{x}) = \vec{y}^{\mathrm{T}} D \vec{y}.$$

Writing $\vec{y}^{\mathrm{T}} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$,

$$\vec{x}^{T}A\vec{x} = \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} \operatorname{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}) \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

 $\Lambda_n y_n$.

<u>/1 y]</u>

Proof. (continued)

(⇒) Suppose A is positive definite, and $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Since P^T is invertible, $\vec{y} = P^T \vec{x} \neq \vec{0}$, and thus $y_j \neq 0$ for some j, implying $y_j^2 > 0$ for some j. Furthermore, since all eigenvalues of A are positive, $\lambda_i y_i^2 \ge 0$ for all i; in particular $\lambda_j y_j^2 > 0$. Therefore, $\vec{x}^T A \vec{x} > 0$.

Proof. (continued)

(⇒) Suppose A is positive definite, and $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Since P^T is invertible, $\vec{y} = P^T \vec{x} \neq \vec{0}$, and thus $y_j \neq 0$ for some j, implying $y_j^2 > 0$ for some j. Furthermore, since all eigenvalues of A are positive, $\lambda_i y_i^2 \ge 0$ for all i; in particular $\lambda_j y_j^2 > 0$. Therefore, $\vec{x}^T A \vec{x} > 0$.

(\Leftarrow) Conversely, if $\vec{x}^T A \vec{x} > 0$ whenever $\vec{x} \neq \vec{0}$, choose $\vec{x} = P \vec{e}_j$, where \vec{e}_j is the jth column of I_n . Since P is invertible, $\vec{x} \neq \vec{0}$, and thus

$$\vec{y} = P^T \vec{x} = P^T (P \vec{e}_j) = \vec{e}_j$$

Thus $y_j = 1$ and $y_i = 0$ when $i \neq j$, so

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2 = \lambda_j,$$

i.e., $\lambda_j = \vec{x}^T A \vec{x} > 0$. Therefore, A is positive definite.

Theorem (Constructing Positive Definite Matrices)

Let U be an $n\times n$ invertible matrix, and let $A=U^{T}U.$ Then A is positive definite.

Theorem (Constructing Positive Definite Matrices)

Let U be an $n \times n$ invertible matrix, and let $A = U^T U$. Then A is positive definite.

Proof.

Let $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Then

$$\begin{split} \vec{\boldsymbol{x}}^{\mathrm{T}} \mathbf{A} \vec{\boldsymbol{x}} &= \vec{\boldsymbol{x}}^{\mathrm{T}} (\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}) \vec{\boldsymbol{x}} \\ &= (\vec{\boldsymbol{x}}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}}) (\boldsymbol{U} \vec{\boldsymbol{x}}) \\ &= (\boldsymbol{U} \vec{\boldsymbol{x}})^{\mathrm{T}} (\boldsymbol{U} \vec{\boldsymbol{x}}) \\ &= || \boldsymbol{U} \vec{\boldsymbol{x}} ||^{2}. \end{split}$$

Since U is invertible and $\vec{x} \neq \vec{0}$, $U\vec{x} \neq \vec{0}$, and hence $||U\vec{x}||^2 > 0$, i.e., $\vec{x}^T A \vec{x} = ||U\vec{x}||^2 > 0$. Therefore, A is positive definite.

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix. For $1 \le r \le n$, ^(r)A denotes the $r \times r$ submatrix in the upper left corner of A, i.e.,

$$\label{eq:aij} ^{(r)}A = \left[\begin{array}{c} a_{ij} \end{array} \right], \ 1 \leq i,j \leq r.$$

 $^{(1)}A$, $^{(2)}A$,..., $^{(n)}A$ are called the principal submatrices of A.

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix. For $1 \le r \le n$, ^(r)A denotes the $r \times r$ submatrix in the upper left corner of A, i.e.,

$$\label{eq:aij} ^{(r)}A = \left[\begin{array}{c} a_{ij} \end{array} \right], \ 1 \leq i,j \leq r.$$

 $^{(1)}A$, $^{(2)}A$,..., $^{(n)}A$ are called the principal submatrices of A.

Lemma

If A is an $n \times n$ positive definite matrix, then each principal submatrix of A is positive definite.

Proof.

Suppose A is an $n\times n$ positive definite matrix. For any integer r, $1\leq r\leq n,$ write A in block form as

$$\mathbf{A} = \begin{bmatrix} \mathbf{(r)}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

where B is an $r \times (n - r)$ matrix, C is an $(n - r) \times r$ matrix, and D is an

$$(n-r) \times (n-r) \text{ matrix. Let } \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_r \end{bmatrix} \neq \vec{0} \text{ and let } \vec{x} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_r \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \text{ Then}$$

 $\vec{x} \neq \vec{0}$, and by the previous theorem, $\vec{x}^{T}A\vec{x} > 0$.

Proof. (continued) But

$$\vec{x}^{T}A\vec{x} = \begin{bmatrix} y_{1} & \cdots & y_{r} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} {}^{(r)}A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{r} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \vec{y}^{T} \begin{pmatrix} {}^{(r)}A \end{pmatrix} \vec{y},$$

and therefore $\vec{y}^{T}(\vec{r})A$ $\vec{y} > 0$. Then $\vec{r}A$ is positive definite again by the previous theorem.

Cholesky factorization - Square Root of a Matrix

Cholesky factorization – Square Root of a Matrix

Cholesky factorization – Square Root of a Matrix

$$4 = 2 \times 2^{\mathsf{T}}$$

$$\begin{bmatrix} 4 & 12 & -16\\ 12 & 37 & -43\\ -16 & -43 & 98 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0\\ 6 & 1 & 0\\ -8 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 & -8\\ 0 & 1 & 5\\ 0 & 0 & 3 \end{bmatrix}$$

Cholesky factorization – Square Root of a Matrix

$$4 = 2 \times 2^{\mathrm{T}}$$

$$\begin{bmatrix} 4 & 12 & -16\\ 12 & 37 & -43\\ -16 & -43 & 98 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0\\ 6 & 1 & 0\\ -8 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 & -8\\ 0 & 1 & 5\\ 0 & 0 & 3 \end{bmatrix}$$

Theorem

Let A be an $n \times n$ symmetric matrix. Then the following conditions are equivalent.

- 1. A is positive definite.
- 2. $det(^{(r)}A) > 0$ for r = 1, 2, ..., n.
- 3. $A = U^{T}U$ where U is upper triangular and has positive entries on its main diagonal. Furthermore, U is unique. The expression $A = U^{T}U$ is called the Cholesky factorization of A.

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A = U^T U$ can be obtained as follows.

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A = U^T U$ can be obtained as follows.

1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix \hat{U} ; then \hat{U} has positive entries on its main diagonal (this can be proved by induction on n).

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A = U^T U$ can be obtained as follows.

- Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix Û; then Û has positive entries on its main diagonal (this can be proved by induction on n).
- 2. Obtain U from \widehat{U} by dividing each row of \widehat{U} by the square root of the diagonal entry in that row.

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the Cholesky factorization of A.

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the Cholesky factorization of A.

Solution

$$^{(1)}\mathbf{A} = \begin{bmatrix} 9 \end{bmatrix}$$
 and $^{(2)}\mathbf{A} = \begin{bmatrix} 9 & -6 \\ -6 & 5 \end{bmatrix}$,

so $det(^{(1)}A) = 9$ and $det(^{(2)}A) = 9$. Since $det(\overline{A}) = 36$, it follows that A is positive definite.

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the Cholesky factorization of A.

Solution

$$^{(1)}\mathbf{A} = \begin{bmatrix} 9 \end{bmatrix}$$
 and $^{(2)}\mathbf{A} = \begin{bmatrix} 9 & -6 \\ -6 & 5 \end{bmatrix}$,

so $det(^{(1)}A) = 9$ and $det(^{(2)}A) = 9$. Since $det(\overline{A}) = 36$, it follows that A is positive definite.

$$\begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & -1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 4 \end{bmatrix}$$

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the Cholesky factorization of A.

Solution

$$^{(1)}\mathbf{A} = \begin{bmatrix} 9 \end{bmatrix}$$
 and $^{(2)}\mathbf{A} = \begin{bmatrix} 9 & -6 \\ -6 & 5 \end{bmatrix}$,

so $det(^{(1)}A) = 9$ and $det(^{(2)}A) = 9$. Since det(A) = 36, it follows that A is positive definite.

$$\begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & -1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 4 \end{bmatrix}$$

Now divide the entries in each row by the square root of the diagonal entry in that row, to give

$$\mathbf{U} = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \text{ and } \mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{A}.$$

Verify that

$$\mathbf{A} = \left[\begin{array}{rrr} 12 & 4 & 3 \\ 4 & 2 & -1 \\ 3 & -1 & 7 \end{array} \right]$$

is positive definite, and find the Cholesky factorization of A.

Verify that

$$\mathbf{A} = \left[\begin{array}{rrr} 12 & 4 & 3 \\ 4 & 2 & -1 \\ 3 & -1 & 7 \end{array} \right]$$

is positive definite, and find the Cholesky factorization of A.

Solution (Final Answer)

 $det (^{(1)}A) = 12$, $det (^{(2)}A) = 8$, det (A) = 2; by the previous theorem, A is positive definite.

$$\mathbf{U} = \begin{bmatrix} 2\sqrt{3} & 2\sqrt{3}/3 & \sqrt{3}/2 \\ 0 & \sqrt{6}/3 & -\sqrt{6} \\ 0 & 0 & 1/2 \end{bmatrix}$$

and $U^T U = A$.