Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-3. Positive Definite Matrices

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Positive Definite Matrices

Cholesky factorization - Square Root of a Matrix

Positive Definite Matrices

Cholesky factorization - Square Root of a Matrix

Positive Definite Matrices

Positive Definite Matrices

Definition

An $\mathrm{n} \times \mathrm{n}$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A , then $\lambda>0$.

Positive Definite Matrices

Definition

An $\mathrm{n} \times \mathrm{n}$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A , then $\lambda>0$.

Theorem
If A is a positive definite matrix, then $\operatorname{det}(\mathrm{A})>0$ and A is invertible.

Positive Definite Matrices

Definition

An $\mathrm{n} \times \mathrm{n}$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A , then $\lambda>0$.

Theorem

If A is a positive definite matrix, then $\operatorname{det}(\mathrm{A})>0$ and A is invertible.

Proof.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$ denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, $\mathrm{A} \sim \mathrm{D}$, where $\mathrm{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}\right)$. Similar matrices have the same determinant, so

$$
\operatorname{det}(\mathrm{A})=\operatorname{det}(\mathrm{D})=\lambda_{1} \lambda_{2} \cdots \lambda_{\mathrm{n}} .
$$

Since A is positive definite, $\lambda_{\mathrm{i}}>0$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$; it follows that $\operatorname{det}(\mathrm{A})>0$, and therefore A is invertible.

Theorem

A symmetric matrix A is positive definite if and only if $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$ for all $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}, \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$.

Theorem

A symmetric matrix A is positive definite if and only if $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$ for all $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}, \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$.

Proof.
Since A is symmetric, there exists an orthogonal matrix P so that

$$
\mathrm{P}^{\mathrm{T}} \mathrm{AP}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}\right)=\mathrm{D},
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$ are the (not necessarily distinct) eigenvalues of A. Let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}, \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$, and define $\overrightarrow{\mathrm{y}}=\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}}$. Then

$$
\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{~A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}^{\mathrm{T}}\left(\mathrm{PDP}^{\mathrm{T}}\right) \overrightarrow{\mathrm{x}}=\left(\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{P}\right) \mathrm{D}\left(\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}}\right)=\left(\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}}\right)^{\mathrm{T}} \mathrm{D}\left(\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}}\right)=\overrightarrow{\mathrm{y}}^{\mathrm{T}} \mathrm{D} \overrightarrow{\mathrm{y}} .
$$

Writing $\overrightarrow{\mathrm{y}}^{\mathrm{T}}=\left[\begin{array}{llll}\mathrm{y}_{1} & \mathrm{y}_{2} & \cdots & \mathrm{y}_{\mathrm{n}}\end{array}\right]$,

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{~A} \overrightarrow{\mathrm{x}} & =\left[\begin{array}{llll}
\mathrm{y}_{1} & \mathrm{y}_{2} & \cdots & \mathrm{y}_{\mathrm{n}}
\end{array}\right] \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}\right)\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\vdots \\
\mathrm{y}_{\mathrm{n}}
\end{array}\right] \\
& =\lambda_{1} \mathrm{y}_{1}^{2}+\lambda_{2 y_{2}^{2}}+\cdots \lambda_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}^{2} .
\end{aligned}
$$

Proof. (continued)

(\Rightarrow) Suppose A is positive definite, and $\vec{x} \in \mathbb{R}^{n}, \vec{x} \neq \overrightarrow{0}$. Since P^{T} is invertible, $\overrightarrow{\mathrm{y}}=\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$, and thus $\mathrm{y}_{\mathrm{j}} \neq 0$ for some j , implying $\mathrm{y}_{\mathrm{j}}^{2}>0$ for some j. Furthermore, since all eigenvalues of A are positive, $\lambda_{i} y_{i}^{2} \geq 0$ for all i ; in particular $\lambda_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}^{2}>0$. Therefore, $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$.

Proof. (continued)

(\Rightarrow) Suppose A is positive definite, and $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}, \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$. Since P^{T} is invertible, $\overrightarrow{\mathrm{y}}=\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$, and thus $\mathrm{y}_{\mathrm{j}} \neq 0$ for some j , implying $\mathrm{y}_{\mathrm{j}}^{2}>0$ for some j. Furthermore, since all eigenvalues of A are positive, $\lambda_{i} y_{i}^{2} \geq 0$ for all i ; in particular $\lambda_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}^{2}>0$. Therefore, $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$.
(\leftarrow) Conversely, if $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$ whenever $\overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$, choose $\overrightarrow{\mathrm{x}}=\mathrm{P} \overrightarrow{\mathrm{e}}_{\mathrm{j}}$, where $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$ is the $j^{\text {th }}$ column of I_{n}. Since P is invertible, $\vec{x} \neq \overrightarrow{0}$, and thus

$$
\overrightarrow{\mathrm{y}}=\mathrm{P}^{\mathrm{T}} \overrightarrow{\mathrm{x}}=\mathrm{P}^{\mathrm{T}}\left(\mathrm{P} \overrightarrow{\mathrm{e}}_{\mathrm{j}}\right)=\overrightarrow{\mathrm{e}}_{\mathrm{j}} .
$$

Thus $\mathrm{y}_{\mathrm{j}}=1$ and $\mathrm{y}_{\mathrm{i}}=0$ when $\mathrm{i} \neq \mathrm{j}$, so

$$
\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots \lambda_{n} y_{n}^{2}=\lambda_{j},
$$

i.e., $\lambda_{\mathrm{j}}=\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$. Therefore, A is positive definite.

Theorem (Constructing Positive Definite Matrices)

Let U be an $\mathrm{n} \times \mathrm{n}$ invertible matrix, and let $\mathrm{A}=\mathrm{U}^{\mathrm{T}} \mathrm{U}$. Then A is positive definite.

Theorem (Constructing Positive Definite Matrices)

Let U be an $\mathrm{n} \times \mathrm{n}$ invertible matrix, and let $\mathrm{A}=\mathrm{U}^{\mathrm{T}} \mathrm{U}$. Then A is positive definite.

Proof.
Let $\vec{x} \in \mathbb{R}^{n}, \vec{x} \neq \overrightarrow{0}$. Then

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{~A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{x}}^{\mathrm{T}}\left(\mathrm{U}^{\mathrm{T}} \mathrm{U}\right) \overrightarrow{\mathrm{x}} \\
& =\left(\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{U}^{\mathrm{T}}\right)(\mathrm{U} \overrightarrow{\mathrm{x}}) \\
& =\left(\mathrm{U} \overrightarrow{)^{\mathrm{T}}}(\mathrm{U} \overrightarrow{\mathrm{x}})\right. \\
& =\|\mathrm{U} \overrightarrow{\mathrm{x}}\|^{2} .
\end{aligned}
$$

Since U is invertible and $\vec{x} \neq \overrightarrow{0}, U \vec{x} \neq \overrightarrow{0}$, and hence $\|U \vec{x}\|^{2}>0$, i.e., $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}=\|\mathrm{U} \overrightarrow{\mathrm{x}}\|^{2}>0$. Therefore, A is positive definite.

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{n} \times \mathrm{n}$ matrix. For $1 \leq \mathrm{r} \leq \mathrm{n},{ }^{(\mathrm{r})} \mathrm{A}$ denotes the $\mathrm{r} \times \mathrm{r}$ submatrix in the upper left corner of A, i.e.,

$$
{ }^{(\mathrm{r})} \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right], 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{r} .
$$

${ }^{(1)} \mathrm{A},{ }^{(2)} \mathrm{A}, \ldots,{ }^{(\mathrm{n})} \mathrm{A}$ are called the principal submatrices of A .

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{n} \times \mathrm{n}$ matrix. For $1 \leq \mathrm{r} \leq \mathrm{n},{ }^{(\mathrm{r})} \mathrm{A}$ denotes the $\mathrm{r} \times \mathrm{r}$ submatrix in the upper left corner of A, i.e.,

$$
{ }^{(\mathrm{r})} \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right], 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{r} .
$$

${ }^{(1)} \mathrm{A},{ }^{(2)} \mathrm{A}, \ldots,{ }^{(\mathrm{n})} \mathrm{A}$ are called the principal submatrices of A .

Lemma
If A is an $\mathrm{n} \times \mathrm{n}$ positive definite matrix, then each principal submatrix of A is positive definite.

Proof.

Suppose A is an $n \times n$ positive definite matrix. For any integer $r, 1 \leq r \leq n$, write A in block form as

$$
\mathrm{A}=\left[\begin{array}{cc}
{ }^{(r)} \mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right]
$$

where B is an $\mathrm{r} \times(\mathrm{n}-\mathrm{r})$ matrix, C is an $(\mathrm{n}-\mathrm{r}) \times \mathrm{r}$ matrix, and D is an
$(n-r) \times(n-r)$ matrix. Let $\vec{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{r}\end{array}\right] \neq \overrightarrow{0}$ and let $\vec{x}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{r} \\ 0 \\ \vdots \\ 0\end{array}\right]$. Then
$\overrightarrow{\mathrm{x}} \neq \overrightarrow{0}$, and by the previous theorem, $\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{A} \overrightarrow{\mathrm{x}}>0$.

Proof. (continued)
But

$$
\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{~A} \overrightarrow{\mathrm{x}}=\left[\begin{array}{llllll}
\mathrm{y}_{1} & \cdots & \mathrm{y}_{\mathrm{r}} & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{cc}
(\mathrm{r}) \mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right]\left[\begin{array}{c}
\mathrm{y}_{1} \\
\vdots \\
\mathrm{y}_{\mathrm{r}} \\
0 \\
\vdots \\
0
\end{array}\right]=\overrightarrow{\mathrm{y}}^{\mathrm{T}}\left({ }^{(\mathrm{r})} \mathrm{A}\right) \overrightarrow{\mathrm{y}},
$$

and therefore $\overrightarrow{\mathrm{y}}^{\mathrm{T}}\left({ }^{(\mathrm{r})} \mathrm{A}\right) \overrightarrow{\mathrm{y}}>0$. Then ${ }^{(\mathrm{r})} \mathrm{A}$ is positive definite again by the previous theorem.

Positive Definite Matrices

Cholesky factorization - Square Root of a Matrix

Cholesky factorization - Square Root of a Matrix

Cholesky factorization - Square Root of a Matrix

$$
\begin{aligned}
& 4=2 \times 2^{\mathrm{T}} \\
& {\left[\begin{array}{ccc}
4 & 12 & -16 \\
12 & 37 & -43 \\
-16 & -43 & 98
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
6 & 1 & 0 \\
-8 & 5 & 3
\end{array}\right]\left[\begin{array}{ccc}
2 & 6 & -8 \\
0 & 1 & 5 \\
0 & 0 & 3
\end{array}\right] }
\end{aligned}
$$

Cholesky factorization - Square Root of a Matrix

$$
\begin{aligned}
4 & =2 \times 2^{\mathrm{T}} \\
{\left[\begin{array}{ccc}
4 & 12 & -16 \\
12 & 37 & -43 \\
-16 & -43 & 98
\end{array}\right] } & =\left[\begin{array}{ccc}
2 & 0 & 0 \\
6 & 1 & 0 \\
-8 & 5 & 3
\end{array}\right]\left[\begin{array}{ccc}
2 & 6 & -8 \\
0 & 1 & 5 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Theorem

Let A be an $\mathrm{n} \times \mathrm{n}$ symmetric matrix. Then the following conditions are equivalent.

1. A is positive definite.
2. $\operatorname{det}\left({ }^{(r)} \mathrm{A}\right)>0$ for $\mathrm{r}=1,2, \ldots, \mathrm{n}$.
3. $\mathrm{A}=\mathrm{U}^{\mathrm{T}} \mathrm{U}$ where U is upper triangular and has positive entries on its main diagonal. Furthermore, U is unique. The expression $\mathrm{A}=\mathrm{U}^{\mathrm{T}} \mathrm{U}$ is called the Cholesky factorization of A.

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A=U^{T} U$ can be obtained as follows.

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A=U^{T} U$ can be obtained as follows.

1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix $\widehat{\mathrm{U}}$; then $\widehat{\mathrm{U}}$ has positive entries on its main diagonal (this can be proved by induction on n).

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A=U^{T} U$ can be obtained as follows.

1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix $\widehat{\mathrm{U}}$; then $\widehat{\mathrm{U}}$ has positive entries on its main diagonal (this can be proved by induction on n).
2. Obtain U from $\widehat{\mathrm{U}}$ by dividing each row of $\widehat{\mathrm{U}}$ by the square root of the diagonal entry in that row.

Problem

Show that $\mathrm{A}=\left[\begin{array}{rrr}9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6\end{array}\right]$ is positive definite, and find the
Cholesky factorization of A.

Problem

Show that $\mathrm{A}=\left[\begin{array}{rrr}9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6\end{array}\right]$ is positive definite, and find the
Cholesky factorization of A.
Solution

$$
{ }^{(1)} \mathrm{A}=[9] \quad \text { and } \quad{ }^{(2)} \mathrm{A}=\left[\begin{array}{rr}
9 & -6 \\
-6 & 5
\end{array}\right] \text {, }
$$

so $\operatorname{det}\left({ }^{(1)} \mathrm{A}\right)=9$ and $\operatorname{det}\left({ }^{(2)} \mathrm{A}\right)=9$. Since $\operatorname{det}(\mathrm{A})=36$, it follows that A is positive definite.

Problem

Show that $\mathrm{A}=\left[\begin{array}{rrr}9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6\end{array}\right]$ is positive definite, and find the
Cholesky factorization of A.
Solution

$$
{ }^{(1)} \mathrm{A}=[9] \quad \text { and } \quad{ }^{(2)} \mathrm{A}=\left[\begin{array}{rr}
9 & -6 \\
-6 & 5
\end{array}\right] \text {, }
$$

so $\operatorname{det}\left({ }^{(1)} \mathrm{A}\right)=9$ and $\operatorname{det}\left({ }^{(2)} \mathrm{A}\right)=9$. Since $\operatorname{det}(\mathrm{A})=36$, it follows that A is positive definite.

$$
\left[\begin{array}{rrr}
9 & -6 & 3 \\
-6 & 5 & -3 \\
3 & -3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
9 & -6 & 3 \\
0 & 1 & -1 \\
0 & -1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
9 & -6 & 3 \\
0 & 1 & -1 \\
0 & 0 & 4
\end{array}\right]
$$

Problem

Show that $\mathrm{A}=\left[\begin{array}{rrr}9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6\end{array}\right]$ is positive definite, and find the
Cholesky factorization of A.
Solution

$$
{ }^{(1)} \mathrm{A}=[9] \quad \text { and } \quad{ }^{(2)} \mathrm{A}=\left[\begin{array}{rr}
9 & -6 \\
-6 & 5
\end{array}\right]
$$

so $\operatorname{det}\left({ }^{(1)} \mathrm{A}\right)=9$ and $\operatorname{det}\left({ }^{(2)} \mathrm{A}\right)=9$. Since $\operatorname{det}(\mathrm{A})=36$, it follows that A is positive definite.

$$
\left[\begin{array}{rrr}
9 & -6 & 3 \\
-6 & 5 & -3 \\
3 & -3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
9 & -6 & 3 \\
0 & 1 & -1 \\
0 & -1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
9 & -6 & 3 \\
0 & 1 & -1 \\
0 & 0 & 4
\end{array}\right]
$$

Now divide the entries in each row by the square root of the diagonal entry in that row, to give

$$
\mathrm{U}=\left[\begin{array}{rrr}
3 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad U^{\mathrm{T}} \mathrm{U}=A
$$

Problem
Verify that

$$
\mathrm{A}=\left[\begin{array}{rrr}
12 & 4 & 3 \\
4 & 2 & -1 \\
3 & -1 & 7
\end{array}\right]
$$

is positive definite, and find the Cholesky factorization of A.

Problem
Verify that

$$
\mathrm{A}=\left[\begin{array}{rrr}
12 & 4 & 3 \\
4 & 2 & -1 \\
3 & -1 & 7
\end{array}\right]
$$

is positive definite, and find the Cholesky factorization of A.

Solution (Final Answer)
$\operatorname{det}\left({ }^{(1)} \mathrm{A}\right)=12, \operatorname{det}\left({ }^{(2)} \mathrm{A}\right)=8, \operatorname{det}(\mathrm{~A})=2$; by the previous theorem, A is positive definite.

$$
\mathrm{U}=\left[\begin{array}{rrr}
2 \sqrt{3} & 2 \sqrt{3} / 3 & \sqrt{3} / 2 \\
0 & \sqrt{6} / 3 & -\sqrt{6} \\
0 & 0 & 1 / 2
\end{array}\right]
$$

and $\mathrm{U}^{\mathrm{T}} \mathrm{U}=\mathrm{A}$.

